Какие опасности нейросетей мы недооцениваем?


Случалось ли вам встречать на улице человека, который один в один был бы похож на вас? Одежда, лицо, походка, манера общения, повадки полностью идентичны вашим. Как будто вас отсканировали и распечатали на принтере. Звучит немного жутковато, не так ли? А теперь представьте, что вы увидели видео, в котором такой человек что-то рассказывает о себе. В лучшем случае вы постараетесь вспомнить, когда гуляли так, что ничего не помнили, но могли наговорить такое на камеру. Пока все это звучит как простые рассуждения, но технологии уже вплотную приблизились к тому, чтобы создавать таких людей. Они уже есть, но скоро их станет намного больше.

Что такое Deepfake? Когда появился Deepfake?

Несложно догадаться, что Deepfake это небольшая игра слов, связанная с Deep Learning и теми самыми фейками, о которых я рассказывал выше. То есть, Deepfake должен вывести подделку на новый уровень и разгрузить человека в этом нелегком деле, позволив создавать поддельный контент, не тратя на это силы.

В первую очередь, такие подделки касаются видео. То есть, любой человек сможет сесть перед камерой, сказать что-то, а его лицо будет заменено на другого человека. Выглядит жутковато, ведь, по сути, надо будет просто уловить основные движения человека и отличить подделку будет просто невозможно. Давайте разберемся, с чего это все началось.

Первая генеративно-состязательная нейросеть была создана студентом Стэнфордского университета. Произошло это в 2014 году, а звали студента Ян Гудфеллоу. По сути, он столкнул между собой две нейросети, одна из которых занималась генерацией лиц людей, а вторая анализировала их и говорила похоже или нет. Так они обучали друг друга и в один прекрасный день вторая нейросеть начала путаться и принимать сгенерированные изображения за реальные. Именно такая постоянно усложняющаяся система и рождает Deepfake.

Сейчас одним из главных популяризаторов идеи Deepfake является Хао Ли (Hao Li). Он занимается не только этим, но и многим другим. За это он был не раз удостоен различных наград, в том числе, и негласных. Кстати, он один из тех, кому стоит сказать спасибо за появление в iPhone X анимодзи. Если интересно, на его сайте можно ознакомиться с ним более подробно. Сегодня не он является главной темой обсуждения.

Вспомнили мы о нем только из-за того, что на всемирном экономическом форуме в Давосе он показал свое приложение, которое позволит заменить лицо человека, сидящего перед камерой, на любое другое лицо. В частности, он показывал, как работает система на примере лиц Леонардо Дикаприо, Уилла Смита и других известных людей.

Выглядит это немного жутковато. С одной стороны, можно только восхититься современными технологиями, которые позволяют сканировать лицо, на ходу менять его на другое и выдавать новую картинку. На все это тратятся доли секунды и система даже не тормозит. То есть, это позволяет не просто обработать готовое видео и заменить лицо, но и участвовать такому персонажу в каком-нибудь живом общении по видеосвязи.

Как выявить Deepfake?

Проблема даже не в том, что такие системы надо запретить, а в том, что это уже невозможно. Они уже есть и развитие технологий, в том числе, и считывания лиц привело к их появлению и распространению открытого кода. Даже если представить, что система в нынешнем виде перестанет существовать, надо понимать, что ее создадут заново. Просто еще раз научат нейросети работать между собой и все.

Пока не все так страшно, и определить подделку можно буквально невооруженным глазом. Картинка похожа, но она достаточно грубая. Кроме этого, она иногда имеет некоторые проблемы с совмещением, особенно по границам лица. Но ничего не стоит на месте и развить ее еще больше совсем не сложно. Тот же Хао Ли уверен, что на это потребуется не больше нескольких месяцев, а для создания “масок”, которые не отличит даже компьютер, надо еще несколько лет. После этого пути назад уже не будет.

С одной стороны, от этого сможет защитить алгоритм, который уже создают YouTube и Facebook. Кстати, последние даже открыли конкурс на разработку технологии распознавания — Deepfake Detection Challenge («Задача по выявлению дипфейков»). Призовой фонд этого конкурса составляет 10 миллионов долларов. Конкурс уже идет и завершится в марте 2020 года. Еще можно успеть поучаствовать.

Возможно, такая щедрость обусловлена фейковым видео с самим Марком Цукербергом. Если эти две вещи связаны, появление такого конкурса неудивительно.

Если замененное лицо будет полностью соответствовать оригиналу, противосила в лице специальной нейросети будет бессильна. В этом случае ей придется ловить минимальные отличия в мимике, движениях и манере говорить. В случае с известными людьми такая проблема будет решена на уровне видеосервиса, так как тот же YouTube знает, как двигается условный Дональд Трамп. Когда дело дойдет до менее известного человека, это будет сложнее. Хотя, это тоже можно будет доказать, посадив его перед камерой и ведя непринужденную беседу, пока нейросеть анализирует его движения. Получится что-то вроде изучения отпечатка пальца, но, как видим, это опять приведет к излишним сложностям.

Если вшить системы определения подлинности видео в камеры, их тоже можно будет обойти. Можно сделать так, чтобы камера маркировала снятое видео и было понятно, что оно не снято через отдельное приложение или не обработано в специальной программе. Но как в этом случае быть с видео, которые просто были обработаны. Например, смонтированное интервью. На выходе мы получим видео, в котором уже не будет того исходного ключа.

Полный текст статьи

По материалам Hi-News.ru. Автор Артем Сутягин

Добавить комментарий

Ваш адрес email не будет опубликован.