Различные методы манипулирования изображениями были введены в 19 веке и позднее применялись к кинофильмам. Эти методы быстро улучшились с цифровым видео.
В начале 1990-х годов исследователи из академических институтов разработали технологию Deepfake, которая впоследствии была доработана разработчиками в онлайн-сообществах. В последнее время подделки Deepfake привлекают большое внимание за их использование в финансовых махинациях, розыгрышах и фальшивых новостях.
Это заставило правительство и промышленность выявлять и ограничивать их незаконное использование. Тем не менее, технология имеет большой потенциал, если ее правильно использовать.
Что такое технология Deepfake?
Deepfakes относятся к манипулируемому визуальному контенту, генерируемому сложным искусственным интеллектом, который дает сфабрикованные изображения и звуки, которые кажутся реальными. В большинстве случаев, человек в существующем видео или изображении заменяется на чье-то подобие.
Deepfakes создаются с использованием моделей глубокого обучения – подкласса методов машинного обучения, основанных на искусственных нейронных сетях с репрезентативным обучением. Он включает в себя обучение генеративных архитектур нейронных сетей, таких как генеративные состязательные сети или автоэнкодеры.
Хотя трудно создать хороший deepfake на обычном компьютере, есть много инструментов, доступных в интернете, чтобы помочь людям сделать достойные deepfakes. Технология все еще находится в зачаточном состоянии, поэтому не ожидайте идеального результата.
Мы тщательно собрали несколько хороших deepfake приложений и инструментов, которые не требуют высокого класса рабочего стола с мощными графическими картами (за исключением одного или двух). Вы можете использовать их как в исследовательских целях, так и просто для развлечения, но не нарушайте чью-либо частную жизнь.
6. Doublicat
Doublicat позволяет вам сделать селфи и поместить свое лицо на мем или GIF в своей библиотеке. Это займет около 5 секунд, чтобы ваше лицо было наложено на лицо Брэда Питта, Леонардо Ди Каприо или Тейлора Свифта.
Вы будете удивлены, увидев, насколько хорошо ваше наложенное лицо принимает те же выражения, что и оригинал. Вы можете переслать результаты своей семье и друзьям или опубликовать их в Instagram.
Вывод будет довольно странным, если будет много движений лица, но в целом это интересный эксперимент. По словам разработчиков приложения, само изображение удаляется с серверов сразу после его обработки. Однако при этом сохраняется представление черт лица.
5. FaceApp
FaceApp разработан российской компанией Wireless Lab. Он использует нейронные сети для генерации высокореалистичных преобразований лиц на фотографиях.
Приложение может преобразить ваше лицо, чтобы заставить его улыбаться, выглядеть старше, выглядеть моложе или просто смены пола, а также многих других захватывающих преобразований. Татуировки, виньетки, размытие объектива и наложение фона также являются частью FaceApp.
В 2018 году приложение привлекло много внимания со стороны трансгендерных и ЛГБТ-сообществ из-за его реалистичных преобразований гендерных изменений. Он также столкнулся с критикой как в социальных сетях, так и в прессе за конфиденциальность пользовательских данных.
4. Deepfakes web β
С помощью этого инструмента вы можете создавать deepfake видео в интернете. Однако кривая обучения здесь немного больше, чем то, что вы найдете в других приложениях.
Вам нужно зарегистрироваться и загрузить свои видео. Все остальное происходит в облаке, где используются мощные графические процессоры. На изучение видео/изображений и смену лиц уходит почти 4 часа. Вы также можете использовать обученную модель, чтобы менять лица, что занимает около 30 минут.Качество выходного видео зависит от значений “потерь”: чем ниже значения потерь (при обучении из загруженных видео), тем выше качество. И, конечно, только вы можете получить доступ к своим видео и учебным данным.
3. DeepFaceLab
DeepFaceLab является ведущим программным обеспечением для создания подделок. Она использует новые нейронные сети для замены лиц в видео. Она размещена на GitHub и породила бесчисленное множество видео в интернете.
По словам его разработчиков, более 95% глубоких подделок видео создаются с помощью DeepFaceLab. Его используют несколько популярных каналов YouTube, таких как Ctrl Shift Face, iFake и Shamook.
DeepFaceLab прекрасно работает, но для его использования необходимы технические знания. Как только вы загрузите и разархивируете инструмент, вы увидите множество папок и ряд командных файлов. Существует папка с именем “workspace”, которая содержит все обучающие модели, исходные видео и выходные данные. Инструмент работает с определенными именами и местоположениями файлов, чтобы пакетный файл мог функционировать.
2. FaceSwap
FaceSwap похож на DeepFaceLab, но предоставляет больше возможностей, лучшую документацию и лучшую онлайн-поддержку. И да, он также доступен на Mac и Linux.
Это инструмент с открытым исходным кодом, наполненный функциональностью для выполнения каждого шага процесса Deepfake, от импорта первоначального видео до создания финального видео Deepfake. Чтобы запустить этот инструмент, вам нужна мощная видеокарта, так как замена лица происходит невероятно медленно.
Работая на Python, Keras и Tensorflow, Faceswap имеет активное сообщество, поддерживающее и разрабатывающее программное обеспечение. Есть много учебников, которые помогут вам начать работу.
1. Zao
Технология глубокого подделки Zao позволяет вам модулировать голоса знаменитостей и накладывать свое лицо на тело актера в сцене.
Просто нажмите на одну фотографию и попробуйте тысячи модных причесок, одежды и макияжа. Приложение предоставляет вам множество видеоклипов, нарядов и буквально неограниченные возможности для изучения.
В 2019 году Zao за короткое время приобрел значительную популярность, позволив пользователям обмениваться лицами с любимыми актерами в коротких клипах из телепередач и фильмов. За месяц он стал самым загружаемым бесплатным приложением в Китае. С ростом популярности, его разработчики также столкнулись с критикой политики конфиденциальности приложения.
Это займет всего несколько секунд, чтобы поменять ваше лицо, но так как алгоритм в основном обучен на китайских лицах, это может выглядеть не так естественно, как вы ожидаете.
Тем не менее, все эти инструменты демонстрируют, как быстро развивался базовый ИИ: то, что раньше требовало тысячи картинок, чтобы сделать достаточно убедительное глубокое поддельное видео, теперь требует только одного изображения и дает лучшие результаты.
По материалам "Новая наука"