«Курсив» разбирается, как создают цифровые образы, почему это перспективный бизнес и какая роль в нём отведена дипфейкам
Реклама с виртуальными моделями, цифровые телеведущие и фейковые речи президентов – реальность, которую формируют алгоритмы машинного обучения. В 2020 году технологии искусственного интеллекта глубже проникают в сферы телекоммуникаций, развлечений и формируют новые рынки. За развитием дипфейков внимательно наблюдают специалисты по кибербезопасности, расследуя новые формы мошенничества с использованием передовых технологий
Тренды в области искусственного интеллекта дошли и до Казахстана. Вслед за китайским телевидением отечественные разработчики создали виртуального ведущего новостей, прототипом которого стал казахстанский актёр Санжар Мади. Его виртуальный двойник i-Sanj ведёт новости экономики на Atameken Business и почти не отличается от реального прототипа.
Новая индустрия
В 2017 году объём мирового рынка ИИ составил $1,58 млрд. По разным оценкам, он значительно вырастет к 2024 году (до $20,83, а то и $30,6 млрд). Если верить прогнозам консалтинговой компании Tractica, годовой доход от программного обеспечения для ИИ достигнет $126,0 млрд к 2025 году, по сравнению с $10,1 млрд в 2018 году. Прирост инвестиций демонстрируют и стартапы, использующие алгоритмы машинного обучения. В 2019 году они привлекли рекордные $26,6 млрд.
Согласно отчёту Tractica, распознавание голоса – самая выгодная область применения ИИ, а её совокупный доход с 2018 по 2025 год составит $38,8 млрд. Второе направление по ожидаемой прибыли с общим доходом в $20,5 млрд – цифровые ассистенты. В ближайшей перспективе именно они будут консультировать клиентов в разных сферах, будь то государственные учреждения, банки и call-центры.
Если прогнозы сбудутся, сервисы типа Алисы или Siri также обретут цифровое воплощение. Они будут напоминать пользователям, когда пить лекарства, предупреждать о пробках на дорогах, делиться последними новостями и подсказывать товары в магазине.
А причём тут дипфейки?
Распознавание голоса, генерация речи и создание новой внешности на основе тысяч фотографий – всё это появилось благодаря нейросетям, чаще называемых «искусственным интеллектом». На практике – это разновидность алгоритмов машинного обучения, предназначенных для решения конкретных задач. В том числе для создания цифровых образов и дипфейков. В обоих случаях используются генеративно-состязательные нейросети (GAN), создающие новый контент на основе множества шаблонов речи и изображений.
Эту технологию в 2014 году придумал студент Стэнфорда Ян Гудфеллоу, но широкую известность она получила, когда пользователь Reddit под ником Deepfakes начал подставлять лица голливудских киноактрис в порно. Интерес к новому жанру не заставил себя долго ждать, и уже к 2019 году из 14 678 дипфейков, доступных онлайн, 96% оказались порнороликами.
Дипфейки также нашли применение в развлекательных видео с кинозвёздами и мобильных приложениях типа китайского Zao, подставляющих лица пользователей вместо актёров в популярных фильмах. Невольными героями дипфейков становились и влиятельные персоны, например, Барак Обама, Дональд Трамп и Марк Цукерберг.
По материалам Курсив. Автор Роман Лукьянчиков.