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ABSTRACT
Along with the benefits of Internet of Things (IoT) come potential
privacy risks, since billions of the connected devices are granted
permission to track information about their users and communicate
it to other parties over the Internet. Of particular interest to the
adversary is the user identity which constantly plays an important
role in launching attacks. While the exposure of a certain type of
physical biometrics or device identity is extensively studied, the
compound effect of leakage from both sides remains unknown in
multi-modal sensing environments. In this work, we explore the
feasibility of the compound identity leakage across cyber-physical
spaces and unveil that co-located smart device IDs (e.g., smart-
phone MAC addresses) and physical biometrics (e.g., facial/vocal
samples) are side channels to each other. It is demonstrated that our
method is robust to various observation noise in the wild and an
attacker can comprehensively profile victims in multi-dimension
with nearly zero analysis effort. Two real-world experiments on dif-
ferent biometrics and device IDs show that the presented approach
can compromise more than 70% of device IDs and harvests multiple
biometric clusters with ∼ 94% purity at the same time.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; • Human-centered computing→ Ubiquitous and
mobile computing.
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1 INTRODUCTION
Internet of Things (IoT) devices are gaining popularity: it is ex-
pected that 20 billion IoT devices will be globally deployed by 2020
[46]. Along with the benefits of them come potential privacy risks.
By connecting rich sensors (e.g., cameras, microphones, geophones)
to the Internet, many IoT devices can potentially suggest or expose
extensive information about their users. Moreover, due to the ma-
ture manufacturing technologies, IoT devices can be made very
small and easily hidden in commonplace [58]. According to the
Identity Theft Research Center, ∼ 4.5 million sensitive records con-
taining personally identifiable information were exposed in 2017
alone, representing a 126% increase from the previous year [11].
Users who have their identity information compromised may suffer
from threats ranging from persecution by governments [44], to
targeted frauds/advertising [14], to spoofing attacks [22].

Given the severe consequences of identity theft, prior efforts
have been made to investigate leak channels and effective counter-
measures. These efforts can be broadly categorized into two types,
where one focuses on revealing the identity of user via biomet-
rics (e.g., face, voice, gait), while the other type concerns the link
between user identity and devices identities (IDs), such as (MAC
addresses of smartphones, web/browser cookies of laptops etc.). For
biometrics, Ilia et al. proposed to rethink the access control of face
photos to prevent users being recognized by unwanted individuals
on social media [25]. Meanwhile, privacy breach via device IDs also
draws substantial attention. For example, Yen et al. showed how
several digital identities, such as IP, cookies and usernames, can be
combined to track users’ devices reliably on the web [64]. Cunche et
al. demonstrated that the MAC addresses of Wi-Fi enabled devices
can be abused to track device owners’ locations [17].

The above works unveil possible compromisations brought by
either biometrics or device IDs. However, few studies discuss the
risk of information leakage from a compound channel. Intuitively,
given a hidden camera contributing user’s facial biometrics, the de-
vice IDs (e.g., phone MAC addresses [17]) captured by a co-located
WiFi sniffer can be utilized as side information to complete its eaves-
dropping view. Similarly, a co-located hidden camera is also a side
channel to the WiFi sniffer and can be maliciously used to aug-
ment its knowledge base. Though the tactic to combine side chan-
nels is straightforward, associating one’s biometrics and devices
is non-trivial under real-world constraints. The first challenge is
the spatial-temporal mismatch between biometric and device
ID observations. While both of the observations conceptually de-
scribe the ‘identity’ of a user, they are not necessarily sensed at
the same time. For instance, sniffing the MAC address of a victim’s
smartphone does not imply that the victim is speaking at the exact
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same instant and vice versa. In addition, device IDs and biometrics
are usually sensed by different sensors with different spatial cov-
erage. This difference can further exacerbate the mismatch issue.
For example, as radio wave can penetrate obstacles, a WiFi sniffer
is able to sniff devices behind a shelf which occludes the cameras
for face capture. Such spatial mismatch is inevitable when the at-
tacker seeks to eavesdrop, where the field covered by hidden/spy
cameras or microphones becomes more constrained [27]. To further
complicate the problem, the spatial-temporal mismatch cannot be
easily addressed by naive elimination, because eavesdropped data
often contains unexpected disturbances from the crowdwhich
cause a substantial amount of observations that are unimportant
to the attacker. Concretely, in our experiment, 1, 147 facial images
from 35 people outside the target (victim) group were observed
(see Sec. 3.1). Many of these non-targets were temporal visitors
to the eavesdropping space. Additionally, we also found 109, 768
distinct MAC addresses in our 238, 833, 555 sniffed packets, with
only 27 MAC addresses belonged to targets’ device IDs. As a result,
a naive elimination method is insufficient to handle these unex-
pected disturbances, while a more sophisticated method is required
to associate biometrics and device IDs.

In this paper, we first validate the feasibility of identity breach
across biometrics and device IDs. We then investigate a cross-
modal association method that addresses the aformentioned chal-
lenges an attacker might face. Our method draws the intuition that:
even if sensed at different instants, long-term eavesdropped
biometrics and device IDs still form a shared context across
modalities. Given the shared context, an adversary is able to as-
sign a set of MAC addresses to biometric clusters based on their
attendance consistency throughout eavesdropped sessions. To deal
with real-world complexity, we present a method that allows an
attacker to robustly associate cross-modal identities under observa-
tion mismatches and substantial noises. Our contributions are both
conceptual and empirical:
• We observe a new privacy issue of cross-modal identity leak-
age and formalize an unprecedented threat in multi-modal
sensing environments. Our work unveils a compound iden-
tity leak from the combined side channels between human
biometrics and device identities.
• We present a novel approach that robustly associates phys-
ical biometrics with device IDs under substantial sensing
noises and observation disturbances. If maliciously used, an
attacker can automatically profile the victims’ identities in
multiple dimensions at the same time.
• We conduct extensive evaluation on two real-world data
collection of different biometrics, showing that our presented
attack is a real threat. In certain cases, an attacker is able
to correctly de-anonymize over 70% device IDs and harvest
multiple biometric clusters of ∼ 94% purity.

Our prototype and code are available at https://github.com/
zjzsliyang/CrossLeak.

2 BACKGROUND
2.1 WiFi MAC Address and Sniffing
WiFi MAC AddressesWiFi communication is on the 802.11 radio
between end devices and access points. Similar to the IP address
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Figure 1: Attack Scenario. Through multi-modal eavesdropping
(e.g., via a hidden camera and/ormicrophone integratedwith aWiFi
sniffer), an attacker stealthily collects biometric and device data
in multiple sessions. The attacker can then leverage our presented
approach to automatically identify targets’ (e.g., Alex and Bob in
the figure) device IDs and harvest their biometric clusters. Subjects
other than Alex and Bob are out-of-set subjects (i.e. non-targets).

in network, every 802.11 radio has a 48-bit MAC address in link
layer which is globally unique as the identifier of that device. The
uniqueness of MAC addresses across devices is guaranteed by the
Institute of Electrical and Electronics Engineers (IEEE) and the
organizations such as smartphone manufacturer and retailer.
WiFi Sniffing. The information exchange on a network following
IEEE 802 standards is through packets. A packet is a chunk of data
consists of ‘header’, ‘body’ and ‘trailer’. Particularly, ‘header’ is
where the sender address and destination address are stored, which
provides the most crucial information for attackers who are inter-
ested in identification. The communication between two devices
on WiFi is by convention via packets but not necessarily in an
one-on-one form. Instead, the sender broadcasts the packet on the
airwaves where every device within range can ‘listen’ to it. The
packet is then checked by any receiving node, and compared with
their own MAC addresses. As a result, besides the desired device
whose MAC address is specified in the header, ‘header’ informa-
tion is also exposed to the surrounding ones which causes passive
sniffing.

2.2 Threat Model
The adversary model considered in this work is an attacker some-
how eavesdropped the device IDs and biometrics of victims for a
period of time. The eavesdropping tool can be a combination of
a WiFi/Bluetooth/ZigBee sniffer and hidden microphone/camera,
or an integrated solution customized from existing devices (e.g.,
WiFi spy microphone [27]). These tools are cheap and commer-
cially available, allowing an easy setup for attackers. Deploying
such an eavesdropping tool is feasible, with threats coming from
both insiders and outsiders.
Insider Threat. A threat from insiders has the potential to com-
promise a group of other co-workers’ identities (see Fig. 1). Owning
to the privileged access granted to an insider, deploying the eaves-
dropping tool is easy to disguise. The attacker can place it as an
office decoration without arousing suspicion. Moreover, since such
a setup does not generate packets, it will not be detected even if
the wireless traffics in the target workplace is regularly inspected
by a security guard. In fact, recent studies [58] found that disguised
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Figure 2: Data collection. (2a): assembled eavesdropping prototype;
(2b): floor plan of the eavesdropping testbed; data were collected in
its three shared spaces - public office, common and meeting rooms.

eavesdropping on a particular type of biometrics or device IDs al-
ready exists in domestic and commercial environments. Under this
assumption, the adversary can stealthily gather device identities
(e.g., MAC addresses) and physical biometrics (e.g., faces/voices).
When sufficient information is collected, the attacker can use our
presented approach for bilateral ID association. As visually or acous-
tically identifying a co-worker is easy for the adversary, such as-
sociation builds a bridge for the attacker to figure out who owns
which device and enables further attacks (e.g., online or physical
tracking [13, 17, 31]).
Outsider Threat. Even if long-term sensor deployment is inacces-
sible to outsiders, an adversary can still eavesdrop enough infor-
mation by carrying disguised mobile devices to public spaces. Here
we provide a concrete example with a WiFi sniffer and camera.
As WiFi sniffing is available on many laptops, we imagine that an
attacker uses his laptop (probably equipped with a back camera) as
the eavesdropping system. The attacker then brings his laptop and
sits in the corner of a public place (e.g., a cafe or vehicles with WiFi
services). Using this setup, the adversary is able to continuously and
covertly capture high-profile or normal customers’ facial images
and sniff WiFi packets of surrounding user smartphones for days.
Eventually, the adversary can associate individuals’ facial images
to personal device IDs with our presented approach. The multi-
dimensional IDs of the victims can make a profit by selling them to
third-party stakeholders, or can be used for launching personalized
advertising/fraud [32] and biometric spoofing [51] subsequently.

3 DATASET AND FEASIBILITY
To understand how one can associate device IDs to biometrics, we
designed an eavesdropping prototype to collect multi-modal data in
indoor environments. We then study the feasibility of associating
these two types of identities on the collected datasets that provides
insights for the presented approach.

3.1 Data Collection Methodology
Eavesdropping Prototype. As shown in Fig. 2a, the assembled
eavesdropping prototype is built on a Raspberry Pi (RPi) 3 [4]. To
collect facial/vocal samples and WiFi MAC addresses, the sensing
modules consist of (1) a Matrix-IO board [5] to record audios in the
far field, (2) an RPi 8MP Camera Board [2] to capture videos and
(3) an Ralink RT5572 WiFi Dongle [1] to sniff MAC addresses. To
reduce storage overheads, the system records video/audio input to
a circular buffer, while simultaneously analyze the input to detect
motion or voice activity on the RPi. When motion or voice activity

Face Dataset Voice Dataset
Sessions 123 49

Victims (Volunteers) 22 21
Non-Victims 35 9

Biometric Samples 27,482 3,555
Sniffed Packets 238,833,555 1,985,862

Distinct Device IDs 109,755 3,478
Average Victims / Session 5.90 2.14
Average Duration / Session 2 hr 15 min

Table 1: Key Features of Our Dataset.

is detected, the buffer is saved to a file. On the side of sniffing, RPi
runs TShark in the background and continuously captures packets
transmitted on the airwaves. The RPi then extracts the source MAC
address from each packet and saves it along with the time of it being
captured and its corresponding received signal strength in a file. In
order to eavesdrop as many MAC addresses as possible, channel
hopping is launched along with sniffing such that live packets on
all channels of different WiFi bands can be captured. It is worth
mentioning that as an alternative for integrated eavesdropping, the
information can also be collected from separate devices as long as
they are co-located.
Testbed and Ethics. As shown in Fig. 2b, our testbed is a certain
floor in a commercial building that has 32 regular residents. A
subset of those residents volunteered to participate as victims in
our experiment. We deployed three eavesdropping tools in a public
office, a common room and ameeting room, with areas of 60m2, 46m2

and 25m2 respectively. Our system unobtrusively collected victims’
data from their daily activities, which is referred as sessions (e.g.,
meetings, chats etc.) in our context1. Sessions being accidentally
recorded without full consents were deleted permanently.
Face-domain Dataset. This dataset consists of 123 sessions and
there are 22 victims and 35 non-victims (e.g., temporary visitors)
captured by the camera. After face detection and image pre-procssing,
the video clips give 27, 482 facial samples. Over 2 × 108 packets
are sniffed during eavesdropping, where approximately 110, 000 of
them are distinct. Please refer to Tab.1 for more detail.
Voice-domain Dataset. This dataset contains 49 sessions con-
tributed by 21 victims and 9 non-victims through different con-
versation scenarios (e.g., meetings). The collected audio recordings
are segmented into 3, 555 utterances. In total, there are around
2 × 106 packets sniffed during data collection coming from about
3, 500 distinct MAC addresses. Please refer to Tab.1 for more detail.

3.2 Feasibility Exploration
We are now in a position to explore the feasibility by inspecting
the eavesdropped data. For the ease of illustration, we use the
term session hereafter to broadly refer to settings in which victims
interact with entities in an environment for a given time interval,
e.g., a physical visit or a meeting in the meeting room from 10am
to 11am. Therefore, a dataset comprises a set of sessions, each of
which is uniquely determined by the time-slot, the location and the
involved subjects.

3.2.1 How Biometrics Aid the De-Anonymization of MAC addresses?
Take facial biometric as an example, we firstly perform clustering on

1The study has received ethical approval R50950.
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Figure 3: Attendance map of 14 sessions: dark squares indicate ab-
sence and bright squares indicate presence. From the compatibility
of attendance in (3a), one can identify which device belongs to a tar-
get face cluster and vice versa in (3b).

the eavesdropped facial images according to the similarity between
their deep features, similar to [40, 62]. Note that because of the
intrinsic uncertainty, the derived clusters are impure, mixed with
samples of other victims or non-targets (to be further discussed
in Sec. 6.2). Fig. 3a shows the attendance of 2 randomly selected
victims derived from their facial biometric clusters observed in 14
random sessions. Below the map of face clusters, we show the top-
4 device IDs with the most similar attendance patterns. One can
notice that, the session attendance map of the ‘true’ smartphone has
a very similar pattern with the victim’s face cluster. As a result, if the
face cluster is visually identifiable by the attacker (e.g., an insider
threat), such similarity can be maliciously used to deanonymize the
MAC address of a target device.

3.2.2 How MAC Addresses Aid the Harvest of Biometrics? Equally,
an attacker can use the eavesdroppedMAC addresses to improve the
efficacy of biometrics harvesting. It is inevitable that eavesdropped
biometrics in real-world include erroneous samples coming from
non-victims or non-targets (e.g., short term visitors to a compro-
mised office as demonstrated in Fig. 1). These samples can not only
contaminate the victims’ biometric clusters, but result in irrelevant
clusters that mislead the attacker. Even worse, if the eavesdropping
is conducted in a public space (e.g., cafe in a commercial building)
by an outsider threat, the amount of irrelevant clusters can be non-
negligible. For example, in our face-domain dataset, there are 1, 147
facial images belongs to 35 non-victims. Despite these factors, as
shown in Fig. 3, the face clusters’ attendance maps of non-targets
are much different from the target devices (i.e., cluster #5 and #9 in
Fig. 3b). The attacker can therefore focus on the successfully asso-
ciated cluster-to-MAC address pairs and ignore the unassociated
ones of non-targets.

3.2.3 Uniqueness Analysis. Knowing that there exists session at-
tendance similarity between one’s physical biometrics and his/her
personal device, a natural question to ask is, does every user have
a discriminative attendance pattern such that the target can be iso-
lated? To answer this, we investigate the possibility of distinguish-
ing a group of victims by selecting only a small subset of sessions in
their attendance history. Two different sampling strategies are used
to obtain the subset: (1) randomly selecting G attended sessions
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Figure 4:Quantified Feasibility: percentage of distinguishable users
based on different session sampling strategies.

of the victim (Rand-G) and (2) randomly selecting G continuous
sessions attended by the victim (Cont-G). Under these strategies,
we calculate the percentage of users that can be distinguished from
others. Fig. 4 shows that on the face-domain dataset, 18 out of the
22 victims can be distinguished from the randomly selected 25 ses-
sions (Rand-25 strategy); when the number of sessions reaches 50,
all victims can be perfectly distinguished. Similar behaviour can be
observed on face-domain dataset when adopting Cont-G strategy.
As for the voice-domain dataset which has 49 sessions, 19 out of
the 21 victims can be identified via Rand-20 and Cont-20 strategies;
when all sessions are used, all victims are perfectly separated.

Takeaway: The above results indicate that the attendance pattern
of a victim can be significantly different from others. Such unique-
ness probably is due to the distinct living/working habits of indi-
viduals. Based on the above analysis, we conclude that cross-modal
identity breach is feasible and is a real threat.

4 OVERVIEW AND FORMULATION
4.1 Attack Overview
We now present an attack vector that leverages the above intu-
ition to associate victims’ device IDs and physical biometrics. Our
approach features its robustness to eavesdropping disturbances, re-
quiring minimal prior knowledge from an adversary to launch the
attack. As shown in Fig. 5, our framework consists of three modules
that operates in a pipelined manner: (1) Multi-modal eavesdropping
(2) Device filtering and (3) Cross-modal ID association.

The multi-modal eavesdropping module described in Sec. 3.1 is
used to gather data. An attacker then feeds the sniffed device IDs to
the device filteringmodule so that a majority of devices unimportant
to the attacker can be removed. Given the filtered device IDs and
biometric collection, the attacker can associate them by tasking
the cross-modal association module. In what follows, we will first
formulate the generic association problem after eavesdropping and
then introduce the filtering and association modules in Sec. 5 and
Sec. 6 respectively.

4.2 Problem Formulation
Definition.Without loss of generality, suppose the adversary aims
to compromise the identities of P victims in a target environment.
The adversary can either be an insider that attacks co-workers or an
outsider who collects data of people in public spaces. We assume the
scenario where the attacker managed to eavesdrop identities in G
sessions, S = {sj |j = 1, 2, . . . ,G}. The term session is introduced in
Sec. 3.2 that broadly refers to settings in which victims interact with
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Figure 5: Attack Overview. Our attack framework consists of three
modules that operate in a pipelined manner: (1) Multi-modal eaves-
dropping (2) Device filtering and (3) Cross-modal ID association.

entities in an environment for a certain amount of time. The set of
eavesdropped device IDs are denoted asY = {yj |j = 1, 2, . . . ,H }. A
set of biometric samples are also captured, denoted as X = {x j |j =
1, 2, . . . ,W }.
Modeling Real-world Disturbances. In real-world scenarios, it
is possible that eavesdropping will experience unexpected distur-
bance from the out-of-set (OOS) observations, including device IDs
and biometrics outside the target group. For instance, a subject
visiting the vulnerable workspace in a short term without connect-
ing to WiFi will only have their facial images captured. Similarly,
since WiFi signals are able to penetrate walls, the sniffed MAC
addresses are likely to include devices from a long distance, while
the owner has never appeared in the camera. Without imposing
strong assumptions, we consider the case in the wild where OOS
observations occur in both eavesdropping X and Y. Aside from
the OOS disturbances, a large portion of the sniffed MAC addresses
are dummies or noises, owning to the MAC address randomization
mechanism [45] and nuisance packets generated by other WiFi
devices, e.g., access points, workstations etc. Our problem setup
considers that these observation noises are included in Y.
Attack Goal. Given the very noisy eavesdropped data of X and Y,
discover the device IDs and biometric feature clusters belonging to P
target victims, and then correctly associate these cross-modal identities.
For readability, we describe our presented approach in the context
using MAC addresses as the device IDs with facial/vocal samples
as biometrics.

5 DEVICE FILTERING
As the sniffed MAC addresses (i.e., device IDs) contain instances
outside the target environment, one needs to filter the eavesdropped
device IDs in Y and derive a smaller and cleaner set of MAC ad-
dresses L = {lj |j = 1, 2, . . . ,M}. Our proposed filter draws char-
acteristics from (1) MAC address format and (2) wireless signal
strength. It should be noted that while we describe the following
filtering approach with the case of WiFi MAC addresses, the similar
concept can generalize to device IDs attained by other means, e.g.,
Bluetooth sniffing [7, 38].

5.1 MAC Address Format Filter
The goal of this sub-module is to remove device IDs that do not
comply with end devices’ (e.g., smartphones) formats by inspecting
the information hidden in MAC addresses. Particularly, we focus on
two dominant types of disturbance: (1) Randomized MAC addresses
and (2) MAC addresses of WiFi access points.

Filter
Module

Face Dataset Voice Dataset
Number Percentage Number Percentage

Random 71,720 65% 693 20%
Vendor 91 0.08% 96 3%
RSS 108,639 99% 3,378 97%

Table 2: Statistics ofMAC addresses removed by different filtermod-
ules. NOTE: one nuisance MAC address is possibly detected by mul-
tiple modules, leading to over 100% total percentage in the table.

5.1.1 MAC Randomization. To prevent WiFi tracking, both An-
droid and Apple iOS operating systems allow devices in a disassoci-
ated state to use random, locally assigned MAC addresses in active
WiFi scanning. These addresses are dummy bytes pointing to no
real devices. The MAC addresses remain random until the device
is associated with an access point (AP). However, abiding by the
802.11 protocol of IEEE, one very specific bit of the MAC address is
the seventh bit of its first byte: the Locally Administered (LA) bit. If
a LA bit set to 1, theMAC address is implied as randomized/changed
by the Administrator of the device [61]. Therefore, the first step of
our filter utilizes this LA bit and inspects each sniffed packet. Only
those MAC addresses identified as non-randomization are passed
to next-step analysis. As we can see in Tab. 2, randomized MAC
addresses account for about 65% and 20% in the distinct sniffed
device IDs on our face and voice data collection.

5.1.2 Vendor Information. Aside from the information about ran-
domization, one can also find the vendor information from a MAC
address. To guarantee the uniqueness of MAC addresses across
devices, the IEEE assigns blocks of addresses to organizations in
exchange for a fee. An Organizationally Unique Identifier (OUI),
also the first three bytes of a non-randomized MAC address, is such
an information snippet that may be purchased and registered with
the IEEE [3]. By looking up the public database of OUI, we first find
the manufacturers of all MAC addresses. As the attacker targets
the mobile devices of victims, the filter removes those addresses
whose manufacturers are corresponding to WiFi access points and
switches (e.g., TP-Link, Cisco, 3Com, Juniper, LinkSys, D-Link, Net-
Gear). Tab. 2 lists that 91 and 96 MAC addresses in our face and
voice data collection are such kind of MAC addresses.

5.2 Received Signal Strength (RSS) Filter
The second sub-module of our filter aims to filter out distant devices
outside the effective eavesdropping range. Here, we turn to theWiFi
Received Signal Strength (RSS) information in sniffed packets. Fol-
lowing the signal propagation laws of wireless radios, RSS reflects
how far the sniffed devices are from the WiFi sniffer. This spatial
information is pivotal to determining the collocation with biometric
samples. Although WiFi sniffing can capture packets in distance
(∼ 40m), biometric sensing often works only in a short range (e.g.,
7m for microphones). In our context, MAC addresses of interest
to attackers are those can be associated with co-located biometric
observations; our filter thus discards those MAC addresses with
low RSS values, e.g., less than −45 dBm on voice-domain dataset
and less than −55 on face-domain dataset. This helps filter out
108, 639 and 3, 378 unimportant MAC addresses in our two datasets
(see Tab. 2). The threshold is derived empirically by following the
geo-fence concept introduced in [43]. In Sec. 7.3.1, we will discuss
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the impacts of different RSS thresholds on the overall performance.

Summary: Applying all above filtering sub-modules substantially
narrows down the association range of device IDs. In our case,
we found that the MAC addresses of interest (i.e., L) is reduced
from 109, 768 to 174 on face datasets and from 3, 478 to 54 on the
voice dataset. This reduction makes the follow-up cross-modal
association tractable and efficient.

6 CROSS-MODAL ID ASSOCIATION
Given the filtered MAC addresses L and biometric samples X, the
next step is to discover the MAC addresses of victims and associate
them across two identity spaces. Our association approach consists
of three sequential processes: (1) biometric feature extraction (2)
linkage tree construction and (3) node selection. At a high level, the
algorithms works by first extracting deep features from biometric
samples X and constructing a linkage tree based on their feature
similarity. Each node in the tree is a biometric cluster. Then by
leveraging the advocated concept of session attendance pattern
(see Sec. 3.2), victims’ MAC addresses can be discovered in L and
assigned to the corresponding biometric clusters. Algo. 1 illustrates
the association steps.

Algorithm 1 Cross-modality association.

Input: pre-trained feature model fθ , biometric samples X, device
IDs Yand estimated number of victims K .

Output: decision variable A = (ai, j )N ∗M that victims’ device ID j
with corresponding biometric cluster node i are selected.

1: L ← filtering_device(Y) ▷ Sec. 5
2: Z← fθ (X) ▷ Feature Extraction in Sec. 6.1
3: T ← linkage_tree_construction(Z) ▷ Sec. 6.3
4: rl ← device_context_vector(L)
5: rt ← treenode_context_vector(T )
6: A← node_selection(T , rt , rl ,K) ▷ Sec. 6.4

6.1 Biometric Feature Extraction
The key to merging biometric samples lies in how to measure their
similarity. For biometric samples such as facial images or vocal
segments, accurately quantifying their similarity is challenging
owning to multiple factors. For instance, face images can differ a
lot due to lighting conditions [34]; voice quality may vary across
HiFi microphones to low-cost microphones. Thanks to the recent
advances in DNNs, it is proven that they are able to handle vari-
able observation conditions through feature learning from massive
amounts of training samples. To utilize this advantage, biometric
samples are first encoded into a feature embedding Z via a deep
neural network fθ designed for biometric recognition (e.g., facenet
[52] for face recognition and x-vector [54] for speaker recognition).
Such fθ can be pre-trained on public datasets and learns an effective
feature representation. The similarity between biometric samples
are based on the extracted features with the pre-trained model.

6.2 A Naive Method and Its Limitation.
Given the similarity between biometric samples and filtered device
IDs, a naive approach originated from the feasibility analysis (see

Sec. 3.2) is to leverage the diverse participatory information in mul-
tiple sessions and adopt a two-step association procedure: a) in the
Clustering Step, biometric observations X are firstly grouped into
clusters across all sessions, each of which potentially contains the
biometric samples of a single victim; and then b) in the Data Asso-
ciation Step, the clusters are assigned with device IDs based on the
similarity between their attendance patterns across eavesdropped
sessions. Although this approach is simple and easy to implement,
it is not robust against OOS observations. For example, a session
may contain faces or voices of temporal visitors while their device
ID is not captured. Due to the disturbance incurred by OSS subjects,
the number of clusters is intractable as a priori for the attacker. A
misleading clustering result, however, could further degrade the
quality of data association.

6.3 Linkage Tree Construction
To address the limitation of the naive method, we use a linkage
tree to merge similar biometric samples in a hierarchy manner.
Each node in the tree is a biometric cluster candidate, potentially
belonging to a single victim.
Tree Structure. Based on the extracted features Z, our presented
algorithm compiles biometric samples into a linkage tree T . The
leaf nodes Tleaf are samples, while a branch node represents the
cluster of all its descendant leaf nodes. Essentially T represents the
hierarchical clustering of all biometric observations in different
sessions. Selecting a combination of nodes from the tree gives a
specific clustering plan. Each node ti in T is associated with a
linkage score ql inki , describing the average feature similarity or
compatibility between the data within the cluster it represents.
Context Vector.A basic linkage tree can be developed as the above.
However, due to the presence of domain differences, the features
learned via a pre-trained DNN can deviate and mislead the node
merging process. For example, the learned feature representations
on public datasets of front faces are not effective for the side profile
of a face. When ineffective representation features are used, two
face images of different subjects can be falsely merged into the
same node which may cause unrecoverable knock-on effects on the
ensuing association step. In order to combat this problem, we aug-
ment the linkage tree by introducing context vectors to augment
the knowledge of each node. A context vector of the MAC address
is essentially a binary vector describing the session attendance. The
vector’s length is equal to the total number of eavesdropped ses-
sions. Concretely, let rti = (r1ti , r

2
ti , . . . , r

G
ti ) be the context vector

of a tree node ti , where G is the total number of the eavesdropped
sessions. r jti is set to 1 if node ti contains biometric samples eaves-
dropped from session sj . Similarly, a MAC address lk is also linked
with a context vector rlj , and rjlj is set to 1 only if lj is detected in
session sj . Intuitively, for a node ti and a MAC address lj , if rti and
rlj are similar enough, it is very likely that the grouped samples
under node ti are actually the biometric data of the subject who
owns that MAC address lj , as their presence patterns in sessions
agree with each other the most.
Node Scores and Dice Coefficient. Given the context vectors, we
can additionally introduce a data association score to each of its
node ti , which represents the fitness of assigning an identity label to
ti given the filtered MAC addresses L. For a biometric node ti , we
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define its data association scores with respect toM filtered MAC ad-
dresses as a vector qassoci = (q1associ ,q

2
associ , . . . ,q

M
associ ), where

the j-th score qjassoci is the Dice coefficient [19] between the node
context vector rti and the device context vector rlj . Intuitively,
when matching with device IDs, the absence information is not as
informative as the presence information, especially for users present
rarely. Dice coefficient is known to be suitable in handling such
cases which favors the presence information (i.e., ‘1’) when com-
paring two binary vectors. We will further explain this in Sec. 7.3.3.
Together with the linkage score, the final score assigned to the
cluster node ti to a MAC address lj is a composite score function:

q ji = (1 − ω) ∗ ql inki + ω ∗ q
j
associ (1)

where the parameter ω governs how much the adversary trusts the
learned biometric features and to what extent the adversary wants
them to impact the result of cross-modal association.

6.4 Node Selection
Optimization Program. Once node scores are all assigned, the at-
tack of cross-modal ID association is equivalent to selecting the top
K nodes from the tree with a maximum sum. With the previously
introduced terms and notations, we formulate this node selection
problem as follows:

max
A

N∑
i=1

M∑
j=1

q ji ∗ ai, j (2)

subject to
M∑
j=1

ai, j ≤ 1,∀i ∈ 1, . . . ,N (3),
N∑
i=1

ai, j ≤ 1,∀j ∈ 1, . . . ,M (4),

N∑
i=1

M∑
j=1

ai, j = K (5),
∑

i ∈Πk

M∑
j=1

ai, j ≤ 1,∀k ∈ Tleaf (6),ai, j ∈ {0, 1},∀i ∈
{1, . . . ,N },∀j ∈ {1, . . . ,M} (7).
where A = (ai, j )N×M is the decision variable and qji is the compos-
ite score determined by Eq. (1). Tleaf represents the set of all leaf
nodes in the linkage tree. The objective function aims to maximize
the total scores when selecting K nodes in the linkage tree T with
size of N . Intuitively, the selected K nodes are the optimal clusters
out of these N biometric observations. The inequalities in Eq. (3)
simply mean that a node can be assigned to at most one device ID.
Similarly, the constraints in Eq. (4) are used to ensure each device ID
is associated with a single node. Eq. (5) decides howmany nodes the
program should select, i.e., the number of victims. As a clustering
tree, a node cannot be selected with its ancestors or descendants at
the same time since they contain duplicate data. In order to compile
this tree structure in optimization, the constraint Eq. (6) is enforced
to guarantee that on any path leading to a leaf node, at most one
node is assigned to a device ID. Finally, the constraint Eq. (7) is
there to make sure that decision variable ai, j can take on the in-
teger value 0 and 1 only. The above optimization formulation is
essentially an integer linear programming (ILP) problem and can
be solved with off-the-shelf tools [30].
Choice of K. To run the above optimization program, a key step is
to estimate a rough number of subjectsK in the target environment.
Such estimation is made based on the adversary’s observation as
either an insider or an outsider. However, due to the disturbance
from the unknown number of OOS subjects, K is often inaccurate

Session 1 Session 2 Session 3

t10t9

t1 t2 t4 t5 t6t7t8

t11

t13

t14 OOS 
Noise

t13

OOS Subject

l1 l2 l2 l3 l1 l3

l1 l2 l3

Device
IDs

Biometric
Samples

Device-Biometric Association

Figure 6: An illustrative example with 3 victims and 1 OOS subject.
Our presented method inherits the concept of ‘early stop’ and tol-
erates the noisy biometric samples from OOS subjects before their
contamination in merging.

in practice but treated as an approximation of the true number of
victims. Despite this, because the above association approach adopts
a node selection strategy, it is able to pick out and associate as many
correct nodes as possible with either under- or over-estimated K ,
as illustrated in Fig. 6.

7 EVALUATION
In this section, we conduct experiments on both real-world (refer
to Sec. 3.1) and simulation datasets to quantitatively verify the
performance of the presented attack.

7.1 Baseline and Performance Measure
7.1.1 Baseline Methods. Two variants of the proposed association
approach are considered: (1) Ours (Euc.) uses an Euclidean dis-
tance metric rather than the proposed Dice coefficient to calculate a
node score qassoci (see Sec. 6.3); (2) Naive is the the intuitive strat-
egy introduced in Sec. 6.2 that performs clustering and association
step sequentially in contrast to our simultaneous approach.

7.1.2 Performance Measure - Association Accuracy. From the per-
spective of device ID compromise, to represent how well one can
associate physical biometrics with device IDs, we calculate the
portion of correctly associated pairs of biometric clusters and de-
vice IDs among all victims, denoted as the association accuracy.
The true identity of a device ID is retrieved from a pre-registered
table provided by our volunteered ‘victims’, which maps device
MAC addresses to their owners. On the other side, the identity of
an individual biometric sample is manually labeled via inspecting.
Considering that biometric clusters might be noisy, the true label of
a biometric cluster is determined by majority voting. For the ease of
readability, we refer to association accuracy as accuracy hereafter.

7.1.3 Performance Measure - Cluster Purity. From the perspective
of a biometric compromise, we introduce an additional metric purity
that concerns sample-level accuracy. Given a pair of correctly asso-
ciated biometric cluster and MAC address, cluster purity describes
the ratio of samples that actually belong to the corresponding vic-
tim. This metric stems from the real-world application where pure
biometric clusters are more valuable to an attacker for quick iden-
tity determination (e.g., majority voting) and launching subsequent
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Figure 7: Overall Attack Performance.

attacks, such as biometric spoofing or impersonation attacks. For
the ease of readability, we refer cluster purity as purity hereafter.

7.2 Attack Performance
We quantify the cross-modal ID leakage on RealWorld datasets.
Recall in Sec.6.4, an adversary needs to first make an estimation
on the number of potential victims K in the target environment.
Such K is generally inaccurate due to OOS disturbances yet deeply
interwoven in almost all real-world attacks. Obviously, the attack
algorithm needs to be robust against different levels of noises. We
therefore report accuracy and purity under different choices of K
to provide a comprehensive view on attack performance.
Setup. As a reference, we examine a set of Ks ranging from 50% to
150% of the true number of victims P on the RealWorld datasets in
both face- and voice-domain. In this experiment, the regularization
parameter ω is set to 0.5 (refer to Eq. 1) and the RSS threshold is set
to -55 dBm and -45 dBm for face- and voice-domain respectively.
All eavesdropped sessions of our real-world datasets (see Sec. 3.1)
are used in this experiment.
Overall Performance. Fig.7 demonstrates the performance of the
presented mechanism and two baselines as K varies. In all cases, a
clear winning margin of our method against baselines is observed,
with a relatively wide region of K achieving comparable perfor-
mance. Our approach achieves 72.7% and 71.4% accuracy, and 93.9%
and 76.2% purity on face and voice domain datasets respectively.
Dataset Comparison. It can be seen that the advantage is much
more prominent on face-domain. This is due to the fact that faces
captured by cameras in the wild are much noisier than utterances
captured by recorders as described in Sec.3. Consequently, the
quality of face clusters is inferior to that of voice clusters.
Comparison with Ours (Euc.). Observing our method (Ours)
and its Euclidean variant Ours (Euc.), it can be observed that Dice
coefficient yields a significantly higher accuracy than Euclidean
distance, especially on face-domain dataset. This is because, com-
pared to Dice, Euclidean distance evenly punishes unmatched and
matched instances when searching for similar context vectors of
biometric clusters and MAC addresses. However, in our scenario,
Dice is more desirable as the matched pairs should be of higher
importance over unmatched ones to combat attendance sparsity
and observation noise (see Sec. 6.3). Consequently, Euclidean dis-
tance usually leads to purer clusters if correctly associated, but it
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Figure 8: Impact of WiFi RSS threshold on RealWorld datasets.

is also very error-prone when pairing clusters to MAC addresses.
Inspecting purity, our method with Dice coefficient is able achieve
comparable results with Ours (Euc.) when K is reasonably set.
Comparison with Naive. Compared to the Naive approach, the
advantage of using simultaneous clustering and association (Ours)
is also obvious, especially for purity. This can be attributed to the
nature of clustering. Commonly, a clustering algorithm requires
one to pre-define the number of clusters2, then separates the dataset
accordingly. However, under the scenario of attack, such behavior
makes association rely on the guessed number of clusters (i.e., the
K). However, noises will be scattered inside each cluster and this
effect is particularly significant in face-domain. Despite this, our
method alleviates the impact of uncertainK and gives best accuracy
since it only takes effect after identity association. The purity of
the Naive approach is compromised due to the same reason.

7.3 Impact Factors
We now continue our evaluation on the effects of different impact
factors, including (1) WiFi RSS Threshold, (2) Collection Span, (3)
regularization parameter ω and (4) Number of OOS subjects. No-
tably, for the ease of scaling the number of OOS subjects, the fourth
experiment is conducted on two large-scale simulation datasets.
Hereafter, unless otherwise stated, all experiments in (1-3) are con-
ducted on 123 sessions in face-domain and 49 sessions in voice-
domain. K is set to 1.25 times of the true number of victims P (see
Sec. 6.4) and the regularization parameter ω is equal to 0.5 (refer to
Sec. 6.3). The RSS threshold is set to -55 dBm and -45 dBm for face-
and voice-domain respectively.

7.3.1 Impact of WiFi RSS Threshold. As described in Sec.5.2, a criti-
cal factor of filtering nuisance MAC addresses is the spatial distance.
Leveraging the RSS information contained in sniffed packets, an
adversary can determine whether a device is presented in the target
environment by comparing with a pre-defined ‘fence’. Normally,
devices closer to the sniffer have stronger RSS. However, without
accurate calibration, an adversary can only empirically guess a
threshold value based on this fact which results in ambiguity.

As we can see in Fig.8, the influence of varying RSS threshold is
global on all three methods. It shows that for face-domain, a rigor-
ous threshold harms association result with a decrease ranging from
2Clustering algorithms without the requirement of number of clusters often require
other hyper-parameter specification, e.g., the neighborhood size for DBSCAN [53].
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Figure 9: Impact of collection span on face-domain.
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Figure 10: Impact of omega on RealWorld datasets.

22.2% to 56.2% in accuracy. A drastic drop happens in purity when
the threshold goes beyond -50 dBm where Ours decreases to 30%
and Ours (Euc.) fails at -40 dBm. In voice-domain, performance
degrades when the threshold is relaxed for all three approaches,
where accuracy shows 26.7%, 53.3% and 50.0% decrements in Ours,
Ours (Euc.) and Naive respectively. Similar degradation happens
to purity. On the other side, the presented approach maintains its
advantage in both accuracy and purity. The discrepancy between
face- and voice-domain is mainly due to the difference of locations
where faces were captured by the hidden camera deployed in a rela-
tive large public office (60m2) while dialogues were mostly recorded
in a small meeting room (25m2).

7.3.2 Impact of Collection Span. Another key parameter to con-
sider when executing the attack is the number of eavesdropped
sessions, referred to as collection span. Recall that in Sec.3.2.3, we
discussed the prerequisite for victims to be distinguishable. Natu-
rally, more sessions lead to more diverse attendance patterns, indi-
cating that the probability of having inseparable victims is lower.
However, it also increases the amount of OSS observations in both
biometric samples and device IDs. In this experiment, we study the
influence of collection span by gradually decreasing the number
of eavesdropped sessions used in association, mimicking the varia-
tion from long-term to short-term monitoring. This experiment is
not practical on voice-domain dataset since the number of eaves-
dropped sessions is limited (49 sessions) and further decrements in
collection span leads nowhere.

Fig.9 shows that on the face-domain dataset, the presented ap-
proach (Ours) can achieve reasonable accuracy and purity without
using all sessions. This observation coincides with our feasibility
analysis in Sec. 3.2.3 that attendance uniqueness is widely available
even among co-workers. Note that Dice similarity (Ours) achieves
similar purity level with Euclidean distance (Ours (Euc.)) while
maintains its advantage in accuracy. Ours (Euc.) manages to
maintain its high purity but the accuracy is corrupted due to its
non-discriminative constraint on matched and unmatched atten-
dance. Last but not least, there is a drastic drop in Naive approach’s
purity when the number of sessions increases from 80 to 100, caused
by the increment amount of noise added to clusters.

7.3.3 Impact of ω. Recall that in Sec.6.3, we introduced a regular-
ization parameter ω to balance the importance of biometric feature
similarity and session attendance similarity. In this experiment, we
examine the impact of varying this parameter on the presented
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Figure 11: Impact of OOS subjects on Simulation datasets.

approach (Ours). Due to the intrinsic difference between biomet-
ric features, ω takes effect at different scales (i.e., ×20−1 for voice
domain against face domain). As shown in Fig.10, our method is
robust to this parameter while a slight lift of 3.8% in purity can
be observed in face-domain when we put more trust on the con-
text vector. Such behavior proves that, even though the features
extracted via the pre-trained DNNs are already trustworthy, there
is still a gap caused by domain difference. In our approach, context
vector can bootstrap association by providing more insights from
the eavesdropped sessions. As a comparison, since recorded vocal
segments are much less noisy in voice-domain, biometric clusters
become more trustworthy.

7.3.4 Impact of Number of OOS Subjects. In this experiment, we
examine the robustness of the demonstrated approach where the
number of OOS subjects increases, corresponding to different levels
of disturbance in biometric observations. To this end, we composed
a Simulation dataset for each scenario to flexibly adjust this parame-
ter. The Simulation dataset was synthesized from publicly available
datasets, namely VGGFace2 [12] for face-domain and VoxCeleb2
[15] for voice-domain. Both simulation datasets contain 100 ses-
sions with 50 victims and the number of OOS subjects varies from
20 to 80 with a step size of 20. By randomly allocating biometric
samples and pseudo device IDs, the datasets contain 26, 901 facial
images and 10, 100 voice segments.

As we can see in Fig.11, Ours still outperforms baselines and
yields strong robustness against different levels of OOS disturbance.
Respectively, in face- and voice-domain, the standard deviations of
accuracy are 0.02 and 0.01, while the standard deviations of purity
are less than 0.005 and 0.02. This result implies that an attacker can
leverage our approach to robustly compromise identities in public
area, such as public shops with many OOS subjects.

8 RELATEDWORK
Linkage Attack. The linkage attack is a class of attacks that breaks
k-anonymity and reidentifies users [57]. In such an attack, the
adversary collects auxiliary information about a specific individual
from multiple data sources and then combine that data to form
a whole picture about their target, which is often an individual’s
personally identifiable information. Linkage attacks have a long
history and can be dated back to the famous de-anonymization of
a Massachusetts hospital discharge database by joining it with a
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public voter database [56]. Recent studies demonstrated that linkage
attacks are able to infer privacy across different scenarios, including
movie ratings forums [21, 48], crowdsourced sensor/mobility data
[26, 33, 63] and social networks [47, 65]. Clearly, our work draws a
similar flavor with the linkage attack on utilizing entity uniqueness.
But in contrast, our work takes one step forward and formulate the
attack problem in the context of IoT-rich environments. To our best
knowledge, our work is the first one that systemically studies the
vulnerable linkage between biometrics and device IDs.
Side Channel Attacks. The side channel attack is proven to be
widely powerful in practice. By measuring side channel informa-
tion, the attacker is able to recover other information that is often
sensitive [28]. There mainly two types of side channel attacks. First,
it is the side channel attack based on a single field. Such observed
side channel attacks in literature include timing attacks [18], power
analysis attacks [8], electromagnetic analysis attacks [50], acous-
tic attacks [9] and traffic analysis attacks [29]. The second type is
known as a combined side channels attack, which could improve
the accuracy of existing attacks or cope with more sophisticated at-
tack scenarios. Some research recently started to explore the attacks
from combined side channels [20, 36, 37, 55]. However, these work
only focus on a single domain, which has limitations in employing
the information from both sides. In contrast, our system is the first
to explore the privacy issue of identity leakage between physical
(e.g., user biometrics) and digital domains (e.g., smart devices ID).
Cross-modality Association. Technically, our presented cross-
modal association method is related to data association methods.
Given a track of sensor readings, data association aims to figure
out inter-frame correspondences between them. Data association is
widely used in radar systems, when tracking blips on a radar screen
[10], as well as in object monitoring of surveillance systems [24].
When it comes to the cross-modal association, research attention is
limited and all dedicated to location tracking of humans [6, 49, 59].
These methods heavily rely on the hypothesis that both sensor
modalities are observing evolving state spaces matched precisely in
the temporal domain. However, this hypothesis is invalid in our case,
since eavesdropping a MAC address does not imply that someone
will be speaking at that exact instant. On the other side, association
methods are also proposed for autonomous human identification
[40–42]. However, owing to the purpose of learning, these methods
require a known mapping between users and their MAC addresses
which are unknowns to de-anonymize in our context.

9 DISCUSSION
9.1 Potential Mitigation Techniques
Since the presented attack is cross-modal, we discuss possible miti-
gation from both sides of device IDs and biometrics.

9.1.1 Mitigation from the side of Device ID. In this work, the eaves-
dropped device IDs (MAC addresses) are obtained from the WiFi
sniffing module. Perhaps the most intuitive mitigation against is
MAC addresses randomization, a perturbation approach that regu-
larly changes a device’s MAC address in probe request frames and
hence adds more noise to the sniffed data. However, as pointed
out in [45, 60], random MAC addresses, on its own, does not guar-
antee ID privacy. As randomization is not imposed on the sniffed

association frames and transmission frames, an attacker is still able
to capture the true/global MAC addresses of devices. Our analysis
on random MAC addresses filter in Sec. 5 also validates this obser-
vation. Applying randomization to association and transmission
frames is difficult as their responsemechanisms are managedwithin
the 802.11 chipset, instead of the operating system, implying the
only way is to develop a firmware patch that has to be distributed
by manufactures. Moreover, even without WiFi sniffing, an attacker
may also attain device ID by sniffing on connectivity without using
any randomization, e.g., ZigBee [39]. Injecting noise to the context
vectors by turning off connectivity every once in a while seems
a plausible mitigation as well. However, considering the session
duration in Tab. 1, an effective noise injection would either cause
network interruptions if configured by device manufacturer or
require constant user effort when configured manually.

9.1.2 Mitigation from the side of Biometrics. Mitigation solutions
on the side of biometrics are boiled down to the long-standing issues
of spy cameras and microphones. With the maturity of manufac-
turing technology and advent in energy harvesting, these hidden
devices nowadays can be made smaller and batteryless, making
long-term eavesdropping widely available. A promising way is to
use e-devices recognition methods such as [16, 23, 35]. However,
these detection solutions usually require scanning at the entrance
before making sure of the space clear, which is heavily dependent
on user’s cooperation and awareness of hidden devices.

9.2 Attack Limitation
The association between device IDs and physical biometrics is
largely based on the discriminative patterns of individuals’ session
attendance. It is expected that our presented cross-modal associ-
ation would become ineffective when these patterns become am-
biguous and target victims will ‘Hide in a Crowd’. Such pattern
ambiguity can be attributed to over-few eavesdropping sessions,
or tricky attendance scenarios where two or more users always
appear together during eavesdropping.

10 CONCLUSION
In this work, we describe a new type of privacy leakage under multi-
modal attack. We systemically validated that co-located physical
biometrics and device IDs are side channels to each other, which
can significantly facilitate the malicious inference of identity thefts.
A cross-modal association approach is presented by which the ad-
versary can automatically pair victims with their digital devices
and harvest their biometric clusters at the same time, even under
complicated sensing disturbances in the real world. With this strat-
egy, the adversary can comprehensively profile victims in a target
environment and launch more personal attacks. Experimental re-
sults show that our approach is feasible in two real-world scenarios,
where face images and voice segments are captured and associated
with device MAC addresses. We discussed the limitation of the
demonstrated attack vector as well as potential countermeasures
against it. By raising awareness, we invite the community and IoT
manufacturers to look into this new privacy threat.
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